Screen Shot 2023 07 14 At 1 52 03 Pm

Case Study: EP21TDC-2LO - Adhesive for optical components in laser and space applications

July 14, 2023

The ability of bonding agents to withstand thermal and mechanical stress is vital in any application where even the slightest loss of structural integrity can result in performance degradation or even failure. For military and aerospace applications in particular, the stability of bonding agents plays a fundamental role in ensuring mission success when bonded structures face extremes in temperature, vibration, or acceleration. In two such applications, Master Bond EP21TDC-2LO demonstrated its ability to maintain structural integrity under the harshest conditions.

Master Bond Polymer System EP21TDC-2LO is a two-component epoxy resin compound that exhibits high thermal conductivity and excellent electrical insulation. Mixed in a one-to-three ratio, the compound fully cures overnight at ambient temperature or in 2-3 hours at 200°F. The cured compound exhibits outstanding toughness and exceptional tensile elongation for a thermally conductive epoxy. Unlike most flexible epoxies, it passes NASA low outgassing test criteria.

With a service range of 4K to +250°F, it is particularly well suited to bonding applications that need to maintain integrity in harsh environments. Its ability to withstand thermal and mechanical stress in those environments make Master Bond EP21TDC-2LO the bonding agent of choice in many military and aerospace applications.

The following applications illustrate the reliability of EP21TDC-2LO under extreme conditions encountered in near-earth orbit.


Military and space-borne platforms face some of the harshest conditions experienced by any application. Despite significant stresses arising from thermal and mechanical factors, bonding agents used in critical components of those platforms must maintain structural integrity. Master Bond EP21TDC-2LO demonstrates this ability, leading to its use in mission-critical applications in military and aerospace.

Download full case study